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A B S T R A C T

Material extrusion could enable on-demand production of complex and personalized parts but is limited by low
reliability, particularly in higher-volume production. Machine learning-based methods may enhance reliability,
but are often themselves insufficiently reliable for use in production. Foundation artificial intelligence models
have enabled significant improvements in performance across many tasks. Here, a vision-based control system
is reported, coupling active learning and uncertainty awareness with a foundation model to continually learn
to build a specific part better. The resulting framework is called Iterative Learning, as it improves performance
by learning from its own errors during repeated build cycles of the same part. The iterative learning approach
is shown to enable robust error detection and correction while being more space, time and computationally
efficient compared to a naive fine-tuning approach. This provides a path showing how foundation models may
be adapted to enhance reliability across a wider range of additive manufacturing processes.
1. Introduction

Material extrusion, where material is selectively dispensed through
a nozzle at predetermined locations within the build volume, is the
most widespread additive manufacturing (AM) method for reasons
including its low-cost, ease of use and compatibility with diverse poly-
mers, metals, ceramics and other materials. Typically, feedstock in the
form of filament is heated and then extruded through a nozzle onto
the build surface in a layer-by-layer fashion [1]. This unique approach
can produce complex and customized products where and when they
are needed, potentially leading to novel products and industrial sys-
tems across diverse applications such as aerospace, medical devices
and construction [2–4]. However, material extrusion and other AM
systems struggle in higher volume production. A significant cause of
this difficulty is AM’s propensity for errors caused by factors including
variability in feedstock, fluctuations in build chamber conditions, dif-
ferences between AM machines, and the physical complexity of the AM
process itself [5]. These challenges can frequently lead to unrecoverable
build cycles that waste material, energy, and time.

Similarly to many other manufacturing processes, the current er-
ror mitigation strategy in AM relies on expert human operators who
manually adjust the process parameters using a trial and error ap-
proach [6]. However, manual intervention becomes problematic when
required for prolonged hours, when many machines are being used
simultaneously, or when real-time interventions are needed. These
challenges are poised to grow with the advancement of AM, particularly
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as more difficult materials are being handled in more challenging
environments [7–9].

As an alternative to manual monitoring, there has been a surge
of interest in developing intelligent error detection and correction
systems. Specifically for material extrusion, acoustic, inertial, pressure
and current sensors have been used for process monitoring, enabling
detection of anomalies such as nozzle clogs [10–16]. But data from
such sensors tend not to be rich enough to enable comprehensive
error detection and correction. Vision sensors are more information-
rich, enabling the detection of larger scale defects such as layer shifts
and low-quality infills even with traditional computer vision methods
[17–19]. Multi-camera systems, offering insights not visible from a
single visible-spectrum camera, have also been explored [17,20,21].
Recently, deep learning has emerged as a promising route for mon-
itoring AM processes and overcoming the limitations of handcrafted
features for error detection [22,23]. Coupled with control, errors could
also be mitigated by optimizing the process parameters post-build or
controlling them in-situ [24–27]. However, deep learning techniques
remain challenging to implement in practice, for reasons including
instabilities in accuracy as well as the large amount of task-specific
training data required. Importantly, instabilities in accuracy introduce
noise in the controlled parameter, resulting in sub-optimal corrections.
The recent rise of foundation AI models has led to significantly im-
proved performance in many domains [28]. A foundation model is
trained on a diverse range of tasks using large datasets, enabling it to
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Fig. 1. Overview of the iterative learning framework. A. Schematic of the framework and graphical summaries of the sub-tasks involved. The foundation model is initially used to
control the target task. New data are acquired, labeled via the machine-in-the-loop and stored in memory. Before subsequent iterations, the union of existing knowledge from all
prior episodes is used to retrain the agent, making it increasingly capable in performing the task in-hand. B. Demonstration of the framework showing progressive enhancement
in part precision as more iterations of the target task are performed.
generalize and perform well in new situations with minimal additional
training. However, the applicability of foundation models and how
these can be adapted best in manufacturing scenarios remains relatively
under-explored.

In this work, a vision-based control system is presented which inte-
grates active learning with a foundation model. This model leverages
its own predictive uncertainty to progressively specialize in the mass
production of a specific part, as illustrated in Fig. 1. Mass production
refers to large-scale manufacturing processes where a high volume of
identical products is produced using automated systems. The developed
approach, called iterative learning (IL) hereafter, uniquely advances
the system’s capability, allowing it to learn from every build cycle as
well as from the varying environmental conditions it encounters. Using
IL, the system is able to make use of the continual data inflow from
mass production, and therefore to demonstrate increased efficiency and
precision in recovering from errors if and when they occur.

2. Methods

2.1. Data collection and pre-processing

The experimental setup shown in Figure S1 was configured for
data collection. It consisted of a Creality CR-20 Pro material extrusion
AM system, equipped with a commercial endoscope (Pancellent 2.0
Megapixel CMOS camera) attached on its extruder head. No additional
modifications were made to the AM system, to replicate typical opera-
tional conditions. The endoscope was directed towards the extrusion
nozzle, facilitating real-time monitoring of the material deposition
within a moving frame of reference. Both the AM system and the
endoscope were interfaced with a Raspberry Pi 4 Model B running Oc-
toPrint 1.9.3, utilizing a custom plugin adapted from [24]. This plugin
facilitated communication with an online server by posting requests
towards its IP address. The server was responsible for receiving these
requests and storing the corresponding content locally. Every request
included an image captured by the mounted endoscope, alongside
labels obtained from the printer’s firmware, including the material flow
rate at the instance of collection. The material flow rate, defined as
the percentage of material exiting the nozzle’s orifice per unit time,
was directly acquired from the printer’s firmware. This measurement
is always relative to the default settings established during calibration.
2

The AM system utilized polylactic acid (PLA) material feedstock in the
form of 1.75 mm filament, sourced from various manufacturers such as
PolyMaker, colorFabb, and Fillamentum, unless specified otherwise.

To introduce a diverse range of potential defects in the dataset,
deliberate flow rate errors were induced during each build cycle.
After sourcing parts from Thingiverse or creating them using Autodesk
Fusion 360, and subsequently slicing them using Ultimaker 5.2.1, a
Python script was employed to designate certain layers as defective.
Defective layers were initiated by adjusting the flow rate value be-
tween 30% and 300% using the M221 G-code command. To ensure a
balanced dataset, adjustments within this range were selected from a
predefined list of 30 evenly spaced values. Once a value was selected,
it was removed from the list, preventing its reselection until all other
remaining values had been used. To mitigate biases introduced by prior
defects, healthy layers were deposited on top of defective ones to serve
as primers. While this was typically done on a layer-by-layer basis,
parts featuring infill types with alternating hatch orientations required
two healthy layers to ensure that the data with defects included both
orientations. Samples collected during the deposition of primer layers
were excluded from the dataset to avoid bias towards good samples.

At the default sampling rate of 15 Hz, high similarity between con-
secutive frames was observed, posing two significant challenges. Firstly,
it increased the risk of model over fitting, as redundant data may
impede the learning process of the AI system. Secondly, it compromised
the integrity of the train/validation/test split, as identical images across
these subsets may violate the principle of evaluating models on unseen
data, thus undermining the accuracy of the reported model assessments.
To address these issues, all collected data were down sampled to a
frame rate equivalent of 3 Hz. This adjustment allowed a larger time
gap for visual changes between frames to be observable. The choice
of the down-sampling factor was based on a qualitative assessment of
various consecutive frame pairs.

Additionally, images captured immediately following a flow rate
adjustment were disregarded until the system stabilized at the specified
value for the defective layer. This was done to eliminate any samples
that may have been erroneously labeled due to software or mechanical
delays in applying the process parameter changes. To quantitatively
assess the time required for changes to become visually apparent, 20
tests were conducted where the flow rate was varied between 30% to
300% and back. On average, it took 7.3 s for the flow rate to stabilize,
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Fig. 2. Overview of the foundation model. A. Schematics and activation maps of the convolutional neural network consisting of four RegNet blocks and the regression output
head. Block 4 consists of 12 sub-blocks; 3, 6, 9 and 12 of them are retrained for transfer learning schemes 1, 2, 3 and 4 respectively. B. Per-batch augmentations leading to a
diverse training pool. C. Optimization speeds for the different transfer learning schemes. D. Training loss evolution during fine-tuning with different transfer learning schemes. E.
Ground truth vs predicted flow rate from the foundation model for samples from the held-out test set and unseen parts. F. Selected saliency maps for samples from the held-out
and unseen test sets.
with a standard deviation of 0.8 s. At 3 Hz frame rate, this equates
to a window of 22 frames, which were discarded after a flow rate
adjustment was triggered.

Despite the original resolution of the endoscope images being
1280 × 720 pixels, all remaining images were cropped to a 350 × 350
window centered around the location of the extrusion nozzle within
the frame. This cropping procedure was implemented to diminish the
data size and consequently enhance the loading speed during training.
Notably, no information loss arises from cropping, as the focal point of
interest corresponds to the deposition location, rendering distant pixels
less significant for process monitoring.

2.2. Model training

To detect and therefore handle errors, an artificial neural network
(NN) with a convolutional backbone, schematic in Fig. 2A, was trained
using supervised learning to infer flow rate from nozzle-camera images
via regression. The self-regulated network (RegNet) was selected as
the convolutional backbone, known for its efficiency in floating-point
operations per second (FLOPS) [29]. FLOPS serves as a critical metric,
particularly for real-time applications such as control systems. To ex-
pedite training and ensure consistency across experiments, pre-trained
weights from the original RegNet code repository were utilized for
initialization. The output head of the network was adjusted to include
three fully connected strata in series, each consisting of 400 neurons,
400 neurons, and 1 neuron, respectively. Optimization was guided by
minimizing the mean squared error between the network’s output and
the labeled flow rates. The output space was projected into the natural
logarithm space using Eq. (1),

𝑂𝑙𝑜𝑔 = 𝑙𝑜𝑔𝑒(𝑂𝑟𝑒𝑎𝑙∕100) (1)

where 𝑂𝑟𝑒𝑎𝑙 represents the actual flow rate and 𝑂𝑙𝑜𝑔 represents the final
values. This transformation mapped the 30% to 300% range between
−1 and +1, with 100% positioned at 0. This enabled a more compre-
hensive and evenly spaced representation of flow rate variations.

During training, per-batch augmentations were applied to diver-
sify and normalize the input space, as illustrated in Fig. 2B. Applied
transformations included random horizontal flip, rotation in the range
of −30 to 30 degrees, −10 to 10 pixel translation along the X and Y
axis, 80% to 120% re-scaling and crop to random 200 × 200 window.
Additional color jittering was applied through altering hue, brightness
and contrast. The three image channels were finally normalized based
on the mean and standard deviations of whole the training dataset.

For all training sessions the best batch size was found to be 128. The
AdamW optimizer was selected with the weight decay parameter set
3

to 1𝑒 − 5. AdamW decouples weight decay from the gradient update,
meaning it penalises large weights and leads to better generalization
performances [30]. The initial learning rate was configured at 1𝑒 − 4,
complemented by a cosine annealing scheduler. The foundation model
was trained using a computer with two Nvidia Quadro RTX 5000
16 GB GPUs, an Intel i9-9900K CPU, and 64 GB of RAM. For fine-
tuning, iterative learning, inference, and online corrections, the same
hardware configuration was employed, but GPUs were deliberately
excluded by disabling their usage. This approach made experiments
longer but enabled the evaluation of the efficacy of the framework
in scenarios where access to high computational resources is limited
(e.g. most current factory floors).

3. Results

A foundation model is trained on data from multiple build cycles
and its performance is tested against seen and unseen data in Sec-
tion 3.1. This foundation model is then augmented with mechanisms
for uncertainty awareness and active learning in Sections 3.2 and 3.3
respectively, allowing it to progressively improve its comprehension of
the task at hand. Importantly, the IL framework works well without
the need for an explicit reward function, making it easier to deploy
in practice when compared to reinforcement learning approaches. The
generality of IL when applied to extrusion AM is demonstrated, and
the experimental outcomes reveal strong performance compared to a
naive fine-tuning approach, marked by optimized space usage, reduced
computational load, and improved time efficiency.

3.1. Building and deploying the foundation model

A dataset comprising sixty parts, including forty 3D builds and
twenty 2D builds, was compiled using the described data collection
and pre-processing methods from Section 2.1. The introduction of 2D
builds followed the observation of significant intra-class variability
between samples acquired during the deposition of the first layer
and those acquired from subsequent ones. For all parts, infill pattern,
infill density, hatch orientation, and wall count, were randomized to
enhance dataset diversity, while filament and nozzle orifice diameter
remained consistent with PLA and 0.4 mm respectively. Occasional
alterations in color and nozzle style were made for added variance. The
final dataset after processing comprised 1, 120, 120 images. A random
sampling approach was then employed to split the dataset into training,
validation, and test sets, with an 80:10:10 ratio. This allowed sufficient
data for learning, tuning and assessing the network.

Using the generated dataset and model training methods detailed
in Section 2.2, the foundation model was trained. After 25 training
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Fig. 3. Effect of fine-tuning on a specific part. A. Mean absolute error between ground truth and model predictions reported before and after fine-tuning with different amount
of calibration parts (CP) for fifteen test geometries. B. Flow rate evolution during the build cycle of part P01, super-imposed with predictions from the foundation and fine-tuned
models. Microscope images of the part show how over, under and normal extrusion look like on the micro scale (scale bar is 1 mm). C. Flow rate evolution during a build cycle
of the Lulzbot Taz-6, super-imposed with predictions from the foundation and a fine-tuned model from 10 calibration parts. Images of the setup and sample image are also shown.
Part image shows how over, under and normal extrusion look like on the part scale.
epochs, the model demonstrated convergent behavior with the MSE loss
reaching 0.043 in the log-space. The mean absolute error (MAE) on the
held-out test set was observed to be 12.31 in the real-space. MAE is
reported as an additional metric which reflects the magnitude of the
error in an interpretable manner.

The trained foundation model demonstrated consistent performance
across the whole flow rate regime with good capabilities in distinguish-
ing between over, good or under extrusion in the test set, Fig. 2E.
However, a steep decline in performance was observed during inference
on data from unseen parts that have been totally excluded from the
training set. This shift was quantified by a deterioration to 38.24 MAE
units, highlighting a significant challenge in the model’s ability to gen-
eralize to new data. Saliency maps extracted using GradCAM++ [31]
suggested that the performance drops may be correlated to the presence
of previously unseen geometric features, causing the model to focus on
abstract patterns rather than critical regions such as the most recent
extrusion, Fig. 2F.

This challenge presents a pivotal concern: in practical production
settings, the trained model is highly likely to encounter unseen parts.
Consequently, the primary focus revolves around devising strategies to
facilitate seamless adaptation to new data.

3.2. The effect of specializing in one part

A transfer learning approach was firstly employed to naively fine-
tune the foundation model for recognizing features in builds that it has
not previously encountered. This method allowed leveraging existing
knowledge and thus providing an alternative to the traditional reliance
on large, part-specific datasets. The process begins with the production
of a limited number of target part samples, the ‘‘calibration parts’’,
intentionally fabricated with specific errors as described in Section 2.1.
All collected data from these parts are then concatenated into one
balanced set that is used to re-train the foundation model. The re-
training phase serves as a proxy for the target part, allowing the model
to learn and identify task-specific feature maps. During re-training,
only the final neurons are optimized with different schemes shown
in Fig. 2A. Specifically, transfer learning schemes 1, 2, 3, 4 refer to
4

optimizing 3, 6, 9, 12 of the sub-blocks in the final block of the
RegNet architecture. This disables a large portion of gradient back-
propagation calculations and leads to higher training speeds, Fig. 2C.
However, the static neurons are not optimized, limiting their ability
to adapt, and leading to higher training losses, Fig. 2D. By controlling
the amount of static neurons, one can establish a good balance between
fast re-training and plasticity. Transfer learning scheme 2 (6 sub-blocks
re-trained) resulted in the best fit for this case and was used for the
remaining experiments. The process above will be referred to as the
‘calibration phase’ hereafter.

The foundation model was fine-tuned on 15 different geometries,
using 1, 5 and 10 calibration parts in each case, Fig. 3A. The test
geometries were selected from Thingiverse to include parts with dif-
ferent aspect ratio and types of features (i.e., overhangs, thin walls).
Additional complexity was added by slicing with unseen infill types,
including some not seen during training. Grey PLA filament with 1.75
diameter (Polymaker PolyLite PLA - Grey, 1.75 mm/1000 g) was always
used to ensure good comparability between different part experiments.
After the calibration phase, the parts were also built with three random
errors in their build cycle and their data were used for testing. A boost
in the performance of the parameter predictor in tracking the three
errors was observed, even with 1 calibration part, with an average
decrease in MAE equal to 8.64. Similarly, using 5 or 10 calibration
parts offered greater error reduction of 10.05 and 12.53 respectively.
For reference, the flow rate evolution during the build cycle of a P01
part, super-imposed with predictions from different models is shown
in Fig. 3B. The effects of the three errors on the macro-scale are also
visualized. In general the trend observed here suggests that more cal-
ibration parts, e.g. more re-training data, lead to better improvements
in terms of MAE, consistent with existing literature around transfer
learning.

The foundation model was also fine-tuned on another AM system,
with different specifications; a Lulzbot Taz-6 AM system equipped
with a 0.6 mm nozzle and 2.85 mm acrylonitrile butadiene styrene
(ABS) filament (PolyMaker PolyLite ABS - Grey, 2.85 mm/1.000 g),
Fig. 3C. Similar to previous experiments, no other modifications were
made to the AM system, to replicate typical operational conditions.
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Fig. 4. Use of a probabilistic controller to correct errors. A. Schematics of the inference pipeline used to promote and simultaneously quantify robustness. B. Sample timeline of
the probabilistic error correction pipeline which uses particle filters to estimate current belief. The algorithm consists of 6 sub-steps: (i) initial particle distribution, (ii) addition of
adaptive particles, (iii) measurement from model, (iv) weight update using the likelihood function, (v) particle re-sampling and (vi) belief estimation and correction application.
C. Schematics of the validation framework developed to stress-test the error-correction system. A random error is introduced every N minutes while closed-loop control is active
and maintains the flow rate at optimal levels. D. Images and geometric flow rate diagrams of the built artefacts without, foundational and fine-tuned corrections.
Originally, the foundation model over-estimated the flow rate, with
an MAE of 69.21 units. This may be due to differences between the
training machine and the test machine, like the larger orifice diameter,
the different nozzle geometry or the different view angle offered by
the printer-specific camera mount. After fine-tuning with data from
10 calibration parts obtained through the new AM system, the MAE
reduced to 19.68 demonstrating effective transfer of knowledge from
one AM system to another.

The statistical significance of the fine-tuning experiments was es-
tablished through multiple paired t-tests, where prior and posterior
prediction errors were compared. Three different tests were used to
examine how the amount of calibration parts affects the results. The
null hypothesis was that the suggested framework provided no benefit
whereas the alternative hypothesis was fine-tuning caused a decrease in
the prediction errors with high effect. The results indicated statistically
significant differences between the measurements prior and post fine-
tuning, with highly acceptable p-values (≪0.05) and high test power.
The observed effect size confirmed high practical significance that is
proportional to the amount of calibration parts used. This supports the
scalability of the framework, as the calibration phase can be tailored
to the nature of the build (in terms of application) based on a trade-off
between required parameter prediction accuracy and resources needed
to achieve it. The full results from the statistical tests can be found in
Table S1.

Enhancements in the inference pipeline, as shown in Fig. 4A, in-
volved applying slight perturbations to each incoming image, creating
ten variations 𝑉 , and concatenating them into a tensor 𝑉 × 𝐶 × 𝑊 ×
𝐻 with dimensions R10×3×180×180. The network’s forward pass then
generated a R10×1 tensor, with each element corresponding to each
image variant. The final measurement 𝑡𝑛 was derived by calculating the
mean 𝜇 and standard deviation 𝜎 of the tensor’s distribution. Utilizing
𝜇 instead of a single prediction reduced the MAE of the predictions
by 3.23 on average, while 𝜎 offered insights into the robustness or
uncertainty, valuable when used to control the AM system. The compu-
tational overload is minimal since the 10 images were handled by the
NN in parallel.

3.3. Demonstrating an uncertainty aware controller

Applying a correction for every measurement 𝑡𝑛 resulted in unstable
control due to noise and mechanical or software delays. To overcome
this challenge in control stability, multiple measurements 𝑡𝑛 were com-
bined at a suitable frequency to avoid vanishing or overshooting of
the controlled parameter. Specifically, the parameter predictor was
coupled with a probabilistic control algorithm inspired by Monte Carlo
localisation (MCL), achieving autonomous error correction [32]. MCL,
a technique commonly used in mobile robotics, uses a set of 𝑁 particles
denoted by 𝑧 to represent the current state belief 𝐵 for a physical value.
Each particle is assigned a weight 𝑤 that is directly correlated to its
likelihood of being true 𝑝(𝑧|𝑡 ). During operation, extrinsic and intrinsic
5

𝑛

measurements are used to update the likelihood of each particle, using
Bayes’ theorem, Eq. (2)

𝑝(𝑧|𝑡𝑛) ∝ 𝑒
−(𝑧−𝜇)2

2𝜎2 (2)

where 𝜇 and 𝜎 are the mean and uncertainty of the extrinsic mea-
surement. At any instance, the state can be estimated as the weighted
average of all surviving particles, Eq. (3)

𝐵 =
∑𝑁

𝑖=1 𝑤𝑖𝑧𝑖
∑𝑁

𝑖=1 𝑤𝑖
(3)

Adaptive particles are also used to deal with sudden changes in the state
of the system. In general, the developed control algorithm is composed
of two main phases: the update step, which includes six sub-steps shown
in Fig. 4B, and the measuring step during which monitoring data are
collected and processed.

The update and measuring step duration were selected to be 8 s
long each, consistent with the maximum delay that may occur due to
a change in flow rate. During the measuring step, the control system is
allowed to collect as many measurements as possible before the update
step starts. During the update step, all collected measurements are
combined into one Gaussian distribution denoted as G, using weighted
average and standard deviation calculations (weight being directly
proportional to the robustness metric of each measurement). G is then
used as the extrinsic measurement in Eq. (2) to calculate the likelihood
of all existing particles and generate the posterior belief. Based on the
posterior belief a correction is calculated and sent to the AM system.
Estimating and forwarding the update takes a few milliseconds; during
the rest of the update step the system is allowed to settle before the
next measuring step starts. More details for the control algorithm can
be found in supplementary material.

The validation framework in Fig. 4C, was designed as a stress test
to confirm the effectiveness of the control algorithm by introducing
controlled errors in the build cycle. This was achieved by switching to
a random flow rate, at least 10 times during the full duration of a build
cycle. To counteract the errors, a live correction system operated in par-
allel, striving to maintain the AM machine’s flow rate as close to ideal
(e.g., 100%) as possible. For consistency across various experiments,
a fixed seed was utilized, ensuring the same errors were introduced
in different build cycles. This validation framework was rigorously
applied across different scenarios: parts corrected using both founda-
tion and fine-tuned models, and an uncorrected sample, as illustrated
in Fig. 4D. Results indicated a critical limitation in the foundation
model, characterized by the vanishing flow rate due to false positive
corrections. Conversely, the fine-tuned model with 5 calibration parts,
demonstrated robust performance, successfully building the desired
part even under the adversarial conditions imposed by the stress test.
This confirms the hypothesis regarding the utility of a part-optimized
parameter predictor.
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Fig. 5. Analysis of the iterative learning results. A. Example training loss plot during iterative learning. Each re-training iteration begins from the foundation model to avoid
saturation points. B Histogram of the collected training samples divided in iterations. The dataset is becoming increasingly unbalanced with bias towards ideal thus a per-bin weight
is used to balance the loss function. C. Performance of the iterative learning algorithm on five geometries, compared with metrics from simple transfer learning. Average flow rate
and MSE deviations from ideal control plots are shown. 𝐹𝑅𝑎𝑣𝑔 : average flow rate throughout print iteration, 𝐹𝑅𝑠𝑡𝑑 : standard deviation of the flow rate distribution throughout print
iteration. 𝑀𝑆𝐸: mean square error between ideal and ground truth flow rate throughout print iteration. D. Images of artefacts P02, P08 stressed via the validation framework
and corrected using the Iterative learning framework. Best viewed zoomed in.
3.4. A machine in the loop enables iterative learning

Mass production is a setting where processes are repeated many
times. This necessitates adaptation not just across different processes
but crucially, within the same process. Additionally, the repetitive
nature of mass production results in a substantial influx of data, un-
derlining the need to leverage the continuously expanding knowledge
base pertinent to the target domain. Such knowledge encompasses
various updates, ranging from small specification changes (like changes
in nozzle style due to clogging) to new observations that are directly
relevant to the task at hand. Addressing this challenge, the Iterative
Learning (IL) framework was developed, detailed in Algorithm 1.

Algorithm 1 Iterative learning (IL) algorithm
1: Input pre-trained model 𝜃0, target task 𝑃
2: Initialize global knowledge 𝐾
3: while 𝑖 < 𝑖𝑚𝑎𝑥 do
4: Start target performance 𝑃𝑡
5: Initialize iteration data 𝑋𝑡
6: for (𝑥𝑖𝑛𝑓 , 𝑦𝑖𝑛𝑓 ) while 𝑃𝑡
7: �̂� = 𝑓 (𝑥𝑖𝑛𝑓 , 𝜃𝑡)
8: Control 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(�̂�)
9: 𝑋𝑡 ‖ (𝑥𝑖𝑛𝑓 , 𝑦𝑖𝑛𝑓 )

10: 𝐾 ‖𝑋𝑡
11: Fine-tune 𝜃𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑡𝐿(𝜃𝑡, 𝐾)
12: end while
13: end

In IL, the foundational model is initially used to drive the closed-
loop control of an episode of the target task. During the first episode
new data are acquired and labeled via the machine-in-the-loop which
knows the ground truth from firmware estimations, built-in encoders
or any other form of metrology. After each iteration other than the
first, new data are concatenated with all previous knowledge referred
to as memory. Memory is then used to fine-tune the foundation model
in preparation for the next episode. This method is intended to allow
the model to learn from its own mistakes through iterative re-training
during each target task episode, thereby self-correcting biases such
6

as leaning towards predicting under or over extrusion. Specifically
in the context of IL for 3D printing, this approach offers systematic
advantages over the naive fine-tuning framework by eliminating the
need for preparing the calibration phase and reducing the requirement
for post-collection data manipulation. To efficiently manage memory,
a per-bin weighting system can also be implemented, enhancing the
model’s accuracy and reliability, Fig. 5B.

The IL framework alongside naive transfer learning were tested on
five parts also used for the experiments shown in Section 2.2. Specifi-
cally, P02, P05, P06, P07, P08 were selected to include instances where
the naive transfer learning framework performed well and poorly. The
results in Fig. 5C show that IL can outperform previous results in terms
of MSE convergence speed, with less data, and sometimes in just 3 iter-
ations of the target print. Final accuracy can also benefit, especially for
cases where the naive transfer learning approach achieved extremely
poor results like part P07.

Improvements in the average flow rate during the 3D printing
process were also observed. These improvements were evident not
only in stress-test conditions but also in standard operational settings,
extending beyond the initial validation framework. A pivotal element of
this enhancement is the notable reduction of false positive predictions.
Such false positives have previously triggered unnecessary corrections,
adversely affecting print quality. False positives are corrections where
the belief may trigger a correction in the wrong direction. By mini-
mizing these, IL avoided counterproductive interventions, particularly
important in typical printing scenarios where errors are relatively rare
instances.

In Fig. 5D images of the printed artefacts are provided, specifically
P02 and P08, to illustrate the progressive refinement in part precision
across iterations. In the case of P08, during the very first iteration,
the foundation model exhibited bias towards predicting over-extrusion
and caused the actual flow rate below ideal at 70.13% ± 12.21 on
average. After iteration 1 the framework learned from this mistake,
but overcompensated for it, resulting in heavy over-extrusion with
average flow rate equal to 182.31%±9.20. By iteration 2, the framework
demonstrated its adaptive learning capability, striking a balance be-
tween the two extremes with an improved and more consistent average
flow rate of 91.22% ± 6.32. By this iteration the controller is able to
build the part as-designed, with the model effectively correcting its
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Table 1
Ablating model size and framework components. Evaluating impact of foundation model
size and engineering decisions on downstream tasks. Parameters refers to trainable
variables of the neural network architecture. Latency refers to average inference time
across 10 samples, reported in ms per frame on a CPU.

Architecture Parameters Latency MAE

Full pipeline with different architectures
RegNetX_400MF 2.1 M 9.34 19.21
RegNetX_1_6GF 2.6 M 15.87 18.55
RegNetX_8GF 3.7 M 42.41 17.42
RegNetX_32GF 6.2 M 140.35 17.01

Ablation study on RegNetX_400MF
⊖ domain-specific pre-training 24.43
⊖ uncertainty awareness 26.21
⊖ iterative learning 29.20

initial biases in two shots. The process continued through subsequent
iterations with the memory constantly expanding, and by iteration 10
the printed artefact showcased a high degree of precision and geometric
fidelity with 101.20%±5.55 average flow rate. Similar behavior has been
bserved for other parts, including the one seen in Fig. 1.

.5. Ablating the framework components

odel size. A model size ablation was done by training various RegNet
rchitectures, ranging from RegNetX_400MF to RegNetX_32GF, Table 1.
his analysis revealed a clear trade-off between model complexity and
erformance. Following transfer learning scheme 2, as the number of
rainable parameters increased from 2.1 millions to 6.2 millions, a
onsistent decrease in final MAE was observed, from 19.21 to 17.01,
ndicating enhanced predictive accuracy. Concurrently, a substantial
ncrease in computational latency was recorded, for both training and
nference. Specifically, the smallest model can achieve inference in
.34 ms, in stark contrast to the 140.35 ms needed from the largest
ne. These findings further support the need for larger models only if
nd when the computational resources to support them are available.

ramework components. Further ablation on the smallest model,
egNetX_400MF, reveals the significance of the main framework com-
onents; pre-training the foundation model with domain-specific data,
ncertainty modeling using the Monte Carlo inference pipeline, and us-
ng IL instead of naive transfer learning. All three components enhance
odel performance, as their removal resulted in a marked increase in
AE.

. Discussion and open questions

In this work downstream task optimization of a foundation model
as combined with uncertainty awareness and active learning with a
achine in the loop to enable better error detection and correction

pecifically for higher production volume AM. The practical signif-
cance of the proposed approach has been supported using statis-
ical tests. For AM to reach its full potential, it needs to become
ore viable in higher-volume applications. The presented experiments
emonstrated potential to enhance quality monitoring and continually
mproving control in high-volume AM. This could subsequently im-
rove the productivity and sustainability of AM via better quality (in
erms of precision and repeatability) parts and reduced scrap. In turn,
lso enabling novel custom products and distributed manufacturing
ystems across areas such as medical devices and the aerospace indus-
ry. Such vision-based methods may be more challenging to use with
ransparent materials, yet alternative imaging sensors, such as infrared
ameras, can provide assistance, particularly in scenarios where heat
s involved. The methodology developed could also find uses in other
anufacturing processes, where a part-optimized system can enable the
7

ass production of a specific part with increased quality. a
From a control perspective, the IL framework can be seen as combin-
ing aspects of active learning and iterative learning control (ILC) [33].
Historically, ILC research has predominantly concentrated on refining
control mechanisms using a predefined set of signals, but the potential
of task iterations as a means of enhancing sensor-derived information
remains underexplored. ILC’s integration with deep learning is also
limited. On the same note, current active learning methodologies pri-
marily depend on human intervention for labeling ambiguous samples
and typically do not account for the potential of iterative enhancement
in specific tasks. This work addresses these critical gaps, presenting a
unified approach that combines the iterative elements of ILC with deep
learning and the dynamic learning capabilities of active learning. This
integration might hold significant potential for broader applications
across various fields.

In future, multiple networks trained during the IL algorithm could
be used as an ensemble to improve the uncertainty awareness of the
framework. Similarly, the active learning part of the framework can
be improved in terms of space complexity, if the necessity to explicitly
store memory was to be mitigated. The convergence properties of the
IL framework, likely to be similar to those of semi-supervised learning,
may also be investigated.
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